Вконтакте Facebook Twitter Лента RSS

Работа мышц утомление. Сила, работа и утомление мышц

Мышца не может производить работу беспрерывно. При длительной непрерывной работе наступает постепенное снижение работоспособности мышц. Такое состояние носит название мышечного утомления . При мышечном утомлении сила сокращения мышц уменьшается, а сами сокращения становятся более замедленными. При этом имеет место удлинение скрытого периода возбуждения мышц и понижение ее возбудимости. Наступление утомления мышц зависит от частоты их сокращений. Слишком частые сокращения вызывают быстрое утомление. Продолжительность работоспособности мышц зависит также от величины нагрузки, падающей на нее. Для каждой мышцы может быть найдена определенная оптимальная частота сокращений и величина нагрузки, при которых наиболее длительно сохраняется работоспособность мышцы. Отсюда вытекает практический вывод, что величина нагрузки и ритм движения влияют на работоспособность человека, занимающегося физическим трудом, а следовательно, и на количество выполняемой им работы.

Снижение работоспособности мышц обусловлено нервными и химическими факторами. Первоначально утомление возникает в нервных центрах, влияющих на работу мышц, а затем - в окончаниях двигательных нервов на мышечных волокнах (в синапсах). Вследствие этого изменяется характер импульсов, поступающих из нервной системы в мышцы, что и приводит к снижению силы и скорости мышечных сокращений. Зависимость быстроты наступления мышечного утомления от состояния нервной системы доказана специальными опытами и наблюдениями. Известно, в частности, влияние психических и эмоциональных воздействий (например, музыки, пения) на работоспособность человека. Доказано также в специальных опытах на животных, что раздражение симпатических нервов снижает мышечное утомление. Предполагают, что при этом усиливаются обменные процессы в утомленной мышце.

Влияние химических факторов состоит в том, что в работающей мышце продукты обмена (молочная кислота и др.) полностью, не окисляются вследствие недостаточного поступления кислорода. Накопление этих продуктов обмена способствует появлению мышечного утомления.

В целом организме работоспособность мышц зависит от функционального состояния многих систем органов: сердечно-сосудистой, дыхательной, желез внутренней секреции и др.

Большую роль в повышении работоспособности играет систематическая тренировка (упражнения). При физической тренировке происходят изменения не только в мышцах (развитие мышц и связанное с этим увеличение их силы), но и во всех других системах органов, в частности укрепляется сердечно-сосудистая и дыхательная система. Так, у тренированных людей сердечная мышца развита лучше и сокращается с большей силой, поэтому объем крови, выбрасываемой сердцем за одно сокращение и в минуту, больше (хотя ритм сердечных сокращений урежен). Дыхание у тренированных людей более глубокое, что способствует лучшему насыщению крови кислородом (хотя частота дыхания уменьшена). Тренировка приводит к укреплению здоровья и повышению выносливости человека.

Физические упражнения являются одним из методов, применяемых в медицинской практике (лечебная физкультура) для быстрейшего восстановления здоровья больных.

В нашей стране уделяется большое внимание физкультуре и спорту как одному из условий всестороннего гармонического развития человеческой личности. Для человека коммунистического общества будет характерно гармоническое сочетание духовного богатства и моральной чистоты с физическим совершенством.

Основными показателями, характеризующими деятельность мышц, являются их сила и работоспособность.

Сила мышц. Сила - мера механического воздействия на мышцу со стороны других тел, которая выражается в ньютонах или кг-силах. При изотоническом сокращении в эксперименте сила определяется массой максимального груза, который мышца может поднять (динамическая сила), при изометрическом - максимальным напряжением, которое она может развить (статическая сила).

Одиночное мышечное волокно развивает напряжение в 100-200 кг-сил во время сокращения.

Степень укорочения мышцы при сокращении зависит от силы раздражителя, морфологических свойств и физиологического состояния. Длинные мышцы сокращаются на большую величину, чем короткие.

Незначительное растяжение мышцы, когда напрягаются упругие компоненты, является дополнительным раздражителем, увеличивает сокращение мышцы, а при сильном растяжении сила сокращения мышцы уменьшается.

Напряжение, которое могут развивать миофибриллы , определяется числом поперечных мостиков миозиновых нитей, взаимодействующих с нитями актина , так как мостики служат местом взаимодействия и развития усилия между двумя типами нитей. В состоянии покоя довольно значительная часть поперечных мостиков взаимодействует с актиновыми нитями. При сильном растяжении мышцы актиновые и миозиновые нити почти перестают перекрываться и между ними образуются незначительные поперечные связи.

Величина сокращения снижается также при утомлении мышцы.

Изометрически сокращающаяся мышца развивает максимально возможное для нее напряжение в результате активации всех мышечных волокон. Такое напряжение мышцы называют максимальной силой. Максимальная сила мышцы зависит от числа мышечных волокон, составляющих мышцу, и их толщины. Они формируют анатомический поперечник мышцы, который определяется как площадь поперечного разреза мышцы, проведенного перпендикулярно ее длине. Отношение максимальной силы мышцы к ее анатомическому поперечнику называется относительной силой мышцы, измеряемой в кг/см2.

Физиологический поперечник мышцы - длина поперечного разреза мышцы, перпендикулярного ходу ее волокон.

В мышцах с параллельным ходом волокон физиологический поперечник совпадает с анатомическим. У мышц с косыми волокнами он будет больше анатомического. Поэтому сила мышц с косыми волокнами всегда больше, чем мышц той же толщины, но с продольными волокнами. Большинство мышц домашних животных и особенно птиц с косыми волокнами перистого строения. Такие мышцы имеют больший физиологический поперечник и обладают большей силой (рис. 83).

Рис. 83. Анатомический (а-а) и физиологический (б-б) поперечники мышц с разным расположением волокон:


А - параллельноволокнистый тип; Б - одноперистый; В - двуперистый; Г - многоперистый.

Наиболее сильными являются многоперистые мышцы, затем идут одноперистые, двухперистые, полуперистые, веретенообразные и продольноволокнистые.

Много, -одно, -и двухперистые мышцы имеют большую силу и выносливость (мало утомляются), но ограниченную способность к укорачиванию, а остальные виды мышц хорошо укорачиваются, но быстро утомляются.

Сравнительным показателем силы разных мышц является абсолютная мышечная сила - отношение максимальной силы мышцы к ее физиологическому поперечнику, т.е. максимальный груз, который поднимает мышца, деленный на суммарную площадь всех мышечных волокон. Она определяется при тетаническом раздражении и при оптимальном исходном растяжении мышцы. У сельскохозяйственных животных абсолютная сила скелетных мышц колеблется от 5 до 15 кг-сил, в среднем 6-8 кг-сил на 1см2 площади физиологического поперечника. В процессе мышечной работы поперечник мышцы увеличивается и, следовательно, возрастает сила данной мышцы.

Работа мышц. При изометрическом и изотоническом сокращении мышца совершает работу.

Оценивая деятельность мышц, обычно учитывают только производимую ими внешнюю работу.

Работа мышцы, при которой происходит перемещение груза и костей в суставах называется динамической.

Работа (W) может быть определена как произведение массы груза (Р) на высоту подъема (h)

W= P·h Дж (кг/м, г/см)

Установлено, что величина работы зависит от величины нагрузки. Зависимость работы от величины нагрузки выражается законом средних нагрузок: наибольшая работа производится мышцей при умеренных (средних) нагрузках.

Максимальная работа мышцами выполняется и при среднем ритме сокращения (закон средних скоростей).

Мощность мышцы определяется как величина работы в единицу времени. Она достигает максимума у всех типов мышц так же при средних нагрузках и при среднем ритме сокращения. Наибольшая мощность у быстрых мышц.

Утомление мышц. Утомление - временное снижение или потеря работоспособности отдельной клетки, ткани, органа или организма в целом, наступающее после нагрузок (деятельности). Утомление мышц происходит при их длительном сокращении (работе) и имеет определенное биологическое значение, сигнализируя о истощении (частичном) энергетических ресурсов.

При утомлении понижаются функциональные свойства мышцы: возбудимость, лабильность и сократимость. Высота сокращения мышцы при развитии утомления постепенно снижается. Это снижение может дойти до полного исчезновения сокращений. Понижаясь, сокращения делаются все более растянутыми, особенно за счет удлинения периода расслабления: по окончании сокращения мышца долго не возвращается к первоначальной длине, находясь в состоянии контрактуры (крайне замедленное расслабление мышцы). Скелетные мышцы утомляются раньше гладких. В скелетных мышцах сначала утомляются белые волокна, а потом красные.

Из различных представлений о механизме утомления одной из наиболее ранних теорий, объясняющих утомление, была теория истощения, предложенная К. Шиффом. Согласно этой теории причиной утомления служит исчезновение в мышце энергетических веществ, в частности гликогена. Однако, детальное изучение показало, что в утомленных до предела мышцах содержание гликогена еще значительно. В дальнейшем Е. Пфлюгером была выдвинута теория засорения органа продуктами рабочего распада (теория отравления). Согласно этой теории, утомление объясняется накоплением большого количества молочной , фосфорной кислот и недостатком кислорода, а так же других продуктов обмена, которые нарушают обмен веществ в работающем органе и его деятельность прекращается.

Обе эти теории сформулированы на основании данных, полученных в экспериментах на изолированной скелетной мышце и объясняют утомление односторонне и упрощенно.

Дальнейшим изучением утомления в условиях целого организма установлено, что в утомленной мышце появляются продукты обмена веществ, уменьшается содержание гликогена, АТФ, креатинофосфата. Изменения наступают в сократительных белках мышцы. Происходит связывание или уменьшение сульфгидрильных групп актомиозина, в результате чего нарушается процесс синтеза и распада АТФ. Нарушения в химическом составе мышцы, находящейся в целостном организме, выражены в меньшей степени, чем в изолированной благодаря транспортной функции крови.

Исследованиями Н.Е. Введенского установлено, что утомление прежде всего развивается в нервно-мышечном синапсе в связи с низкой его лабильностью.

Быстрая утомляемость синапсов обусловлена несколькими факторами.

Во-первых, при длительном раздражении в нервных окончаниях уменьшается запас медиатора, а его синтез не поспевает за расходованием.

Во-вторых, накапливающиеся продукты обмена в мышце понижают чувствительность постсинаптической мембраны к ацетилхолину, в результате чего уменьшается величина постсинаптического потенциала. Когда он понижается до критического уровня, в мышечном волокне не возникает возбуждения.

И.М.Сеченов (1903)-, исследуя на сконструированном им эргографе для двух рук работоспособность мышц при поднятии груза, установил, что работоспособность утомленной правой руки восстанавливается полнее и быстрее после активного отдыха , т.е. отдыха сопровождаемого работой левой руки. Подобного же рода влияние на работоспособность утомленной руки оказывает сочетающееся с отдыхом раздражение индукционным током чувствительных (афферентных) нервных волокон кисти другой руки, а также работа ногами, связанная с подъемом тяжести, и вообще двигательная активность.

Таким образом, активный отдых, сопровождающийся умеренной работой других мышечных групп, оказывается более эффективным средством борьбы с утомлением двигательного аппарата, чем простой покой.

Причину наиболее эффективного восстановления работоспособности двигательного аппарата в условиях активного отдыха Сеченов с полным основанием связывал с действием на центральную нервную систему афферентных импульсов от мышечных, сухожильных рецепторов работающих мышц.

В организме в различных звеньях рефлекторной дуги утомление в первую очередь наступает в нервных центрах, особенно в клетках коры больших полушарий.

В настоящее время установлено, что функциональное состояние мышц находится под влиянием центральной нервной системы и прежде всего коры больших полушарий. Это влияние осуществляется через соматические нервы, вегетативную нервную систему и железы внутренней секреции.

По двигательным нервам к мышце поступают импульсы из спинного и головного мозга, вызывая ее возбуждение и сокращение, сопровождающиеся изменением физико-химических свойств и функционального состояния мышцы.

Импульсы, поступающие по симпатическим волокнам в мышцу, усиливают процессы обмена веществ, кровоснабжения и работоспособность мышцы. Такое же действие оказывают и медиаторы симпатической системы - адреналин и норадреналин.

Однако единой теории, объясняющей причины утомления, сущность утомления до настоящего времени нет, т.к. в естественных условиях утомление двигательного аппарата организма является многофакторным процессом.

Наступление утомления мышц можно задержать с помощью тренировки. Она развивает и совершенствует функциональные возможности всех систем организма: нервной, дыхательной, кровообращения, выделения и т.д.

При тренировке увеличивается объем мышц в результате роста и утолщения мышечных волокон возрастает мышечная выносливость. В мышце повышается содержание гликогена, АТФ и креатинфосфата, ускоряется течение процессов распада и восстановления веществ, участвующих в обмене. В результате тренировки коэффициент использования кислорода при работе мышц повышается, усиливаются восстановительные процессы вследствие активизации всех ферментативных систем, уменьшается расход энергии. При тренировке совершенствуется регуляторная функция центральной нервной системы, и в первую очередь, коры больших полушарий.

Сила и работа мышц

Сила мышцы определяется тем максимальным грузом, который она в состоянии поднять. Эта сила может быть очень велика. Сила мышцы при прочих равных условиях зависит не от ее длины, а от поперечного сечения: чем больше физиологическое поперечное сечение мышцы, т.е. сумма поперечных сечений всех ее волокон, тем больше тот груз, который она в состоянии поднять. Чтобы иметь возможность сравнивать силу разных мышц, максимальный груз, который мышца в состоянии поднять, делят на число квадратных сантиметров ее физиологического поперечного сечения.

Работа мышцы измеряется произведением поднятого груза на величину укорочения мышцы, т.е. выражается в килограммометрах или граммсантиметрах.

Мощность мышцы, измеряемая величиной работы в единицу времени, также достигает максимальной величины при средних нагрузках. Поэтому зависимость работы и мощности от нагрузки получила название правила средних нагрузок.

Утомление мышц, теории утомления изолированной мышцы и целого организма

Утомлением называется временное понижение работоспособности клетки, органа или целого организма, наступающее в результате работы и исчезающее после отдыха. Понижение работоспособности изолированной из организма мышцы при ее длительном раздражении обусловлено двумя основными причинами. Первой из них является то, что во время сокращений в мышце накапливаются продукты обмена веществ (в частности, молочная кислота, образующаяся при расщеплении гликогена), оказывающие угнетающее влияние на работоспособность мышечных волокон. Часть этих продуктов, а также ионы калия диффундируют из волокон наружу в околоклеточное пространство и оказывают угнетающее влияние на способность возбудимой мембраны генерировать потенциалы действия. Другой причиной развития *утомления изолированной мышцы является постепенное истощение в ней энергетических запасов. При длительной работе изолированной мышцы происходит резкое уменьшение запасов гликогена, вследствие чего нарушаются процессы ресинтеза АТФ и креатинфосфата, необходимых для осуществления сокращения. Для изучения мышечного утомления у человека в лабораторных условиях пользуются эргографами - приборами для записи амплитуды движения, ритмически выполняемого группой мышц.

Утомление - это временное снижение работоспособности мыши в результате работы. Утомление изолированной мышцы можно вызвать ее ритмическим раздражением. В результате этого сила сокращений прогрессирующе уменьшается (рис). Чем выше частота, сила раздражения, величина нагрузки тем быстрее развивается утомление. При утомлении значительно изменяется кривая одиночного сокращения. Увеличивается продолжительность латентного периода, периода укорочения и особенно периода расслабления, .но/снижается амплитуда (рис.) Чем сильнее утомление мышцы, тем больше продолжительность этих периодов. В некоторых случаях, полного расслабления не наступает, развивается контрактура. Это состояние непроизвольного длительного сокращения мышцы. Работа утомление мышц исследуются с помощью эргографии. В прошлом веке, на основании опытов с изолированными мышцами, было предложено 3 теории мышечного утомления.

1)Теория Шиффа: утомление является следствием истощения энергетических запасов, а мышце.

2. Теория Пфлюгера: утомление обусловлено накоплением в мышце продуктов обмена.

3. Теория Ферворна: утомление объясняется недостатком кислорода в мышце. Действительно эти факторы способствуют утомлению в экспериментах на изолированных мышцах. В них нарушается ресинтез ЛТФ. накапливается молочная и пировиноградная кислоты, недостаточно содержание кислорода. Однако в организме интенсивно работающие мышцы, получают необходимый кислород, питательные вещества, освобождаются от метаболитов за счет усиления общего и регионального кровообращения. Поэтому были предложены другие теории утомления. В частности, определенную роль в утомлении принадлежи? нервно-мышечным синапсам. Утомление в синапсе развивается из-за истощения запасов нейромедиатора. Однако главная роль, в утомлении двигательного аппарата принадлежит моторным центрам ЦНС. В прошлом веке И.М.Сеченов установил, что если наступает утомление мышц одной руки, то их работоспособность восстанавливается быстрее при работе другой рукой или ногами. Он считал, что это связано с переключением процессов возбуждения с одних двигательных центров на другие. Отдых с включением других мышечных групп он назвал активным. В настоящее время установлено, что двигательное утомление связано с торможением соответствующих нервных центров, в результате метаболических процессов в нейронах, ухудшением синтеза нейромедиаторов. и угнетением синаптической передачи.

Двигательные единицы

Основным морфо-функциональным элементов нервно-мышечного аппарата скелетных мышц является двигательная единица (ДЕ). Она включает мотонейрон спинного мозга с иннервируемым его аксоном мышечными волокнами. Внутри мышцы этот аксон образует несколько концевых веточек. Каждая такая веточка образует контакт - нервно-мышечный синапс на отдельном мышечном волокне. Нервные импульсы, идущие от мотонейрона, вызывают сокращения определенной группы мышечных волокон. Двигательные единицы мелких мышц, осуществляющих гонкие движения (мышцы глаза, кисти), содержат небольшое количество мышечных волокон. В крупных, их сотни раз больше. Все ДЕ в зависимости от функциональных особенностей делятся_на_3_группы:

I. Медленные неутомляемые. Они образованы красными мышечными волокнами, в которых меньше миофнбрил. Скорость сокращения и сила этих волокон относительно небольшие, но они мало утомляемы. Поэтому их относят тоническим. Регуляция сокращений таких, волокон осуществляется небольшим количеством мотонейронов, аксоны которых имеют мало концевых веточек.

Пример, камбаловидная мышца. Н В. Быстрые, легко утомляемые. Мышечные волокна содержат много миофибрилл и называются "белыми". Быстро сокращаются и развивают большую силу, но быстро утомляются. Поэтому их называют фазными, Мотонейроны этих.."11^ самые крупные, имеют толстый аксон с многочисленными концевыми веточками. Они генерируют нервные импульсы большой частоты. Мышцы глаза.

II А. Быстрые, устойчивые к утомлению. Занимают промежуточное положение.

Физиология гладких мышц

Гладкие мышцы имеются в стенках большинства органов пищеварения, сосудов, выводных протоков различных желёз мочевыводящей системы. Они являются непроизвольными и обеспечивают перистальтику органов пищеварения и мочевыводящей системы, поддержание тонуса сосудов. В отличие от скелетных, гладкие мышцы поперечности клетками чаще веретенообразной формы и небольших размеров, не имеющими поперечной почёрченности. Последнее связано с тем, что сократительный аппарат не обладает упорядоченным строением. Миофибриллы состоят из тонких нитей актина, которые идут в различных направлениях и прикрепляющихся к разным участкам сарколеммы. Миозиновые протофибриллы расположен рядом с актиновыми. Элементы саркоплазматического ретикулума не образуют систему трубочек. Отдельные мышечные клетки соединяются между собой контактами с низким электрическим сопротивлением - нексусами, что обеспечивает распространение возбуждения по всей гладкомышечной структуре. Возбудимость и проводимость гладких мышц ниже. чем скелетных. Мембранный потенциал составляет 40-60 мВ, так как мембрана ГМК имеет относительно высокую проницаемость для ионов натрия. Причем у многих гладких мышц МП не постоянен. Он периодически уменьшается и вновь возвращается к исходному уровню. Такие колебания называют медленными волнами (МВ). Когда вершина медленные полны достигает критического уровня деполяризации, на ней начинают генерироваться потенциалы действия. сопровождающиеся сокращениями (рис). МВ и ПД проводятся по гладким мышцам со скоростью всего от 5 до 50 см/сек. Такие гладкие мышцы называют спонтанно активными, т.е. они обладают автоматией. Например за счет такой активности происходит перистальтика кишечника. Водители ритма кишечной перистальтики расположены в начальных отделах соответствующих кишок.

Генерация ПД в ГМК обусловлена входом в них ионов кальция. Механизмы электромеханического сопряжения также отличаются. Сокращение развивается за счет кальция, входящего в клетку во время ПД, Опосредует связь кальция с укорочением миофибрилл важнейший клеточный белок - кальмодулин.

Кривая сокращения также отличается. Латентный период, период укорочения, а особенно расслабления значительно продолжительнее, чем у скелетных мышц. Сокращение длится несколько секунд. Гладким мышцам, в отличие от скелетных свойственно явление пластического тонуса. Это способность длительное время находится в состоянии сокращения без значительных энергозатрат и утомления. Благодаря этому свойству поддерживается форма внутренних органов и тонус сосудов. Кроме того, гладкомышечные клетки сами являются рецепторами растяжения. При их натяжении начинают генерироваться ПД, что приводит к сокращению ГМК. Это явление называется: миогенным механизмом регуляции сократительной активности.

Изменение структуры мыши с возрастом

Анатомически у новорожденных имеются все скелетные мышцы, но относительно, веса тела они составляют всего 23% (у взрослого 44 %). Количество мышечных подокон в мышцах такое же как у взрослого. Однако микроструктура Мышечных волокон отличается.; Волокна меньше диаметром, в них больше ядер. По мере роста происходит. утолщение и удлинение волокон. Это происходит за счет утолщения миофибрилл, оттесняющих ядра на периферию. Размеры мышечных волокон стабилизируются к 20 годам.

Мышцы у детей эластичнее, чем у взрослых. Т.е. быстрее укорачиваются при сокращении и удлиняются при расслаблении. Возбудимость и лабильность мышц новорожденных, ниже чем взрослых, но с возрастом растет. У новорожденных даже во сне мышцы находятся в состоянии тонуса. Развитие различных групп мышц происходи г неравномерно. 84-5 лет более развиты мышцы предплечья, отстают в развитии мышцы кисти. Ускоренное согревание мышц кисти происходит в 6 - 7 лет. Причем разгибатели развиваются медленнее сгибателей. С возрастом изменяется соотношение тонуса мышц. В раннем детстве повышен тонус мышц кисти, разгибателей бедра т.д. постепенно распределение тонуса нормализуется.

Показатели силы и работы мыши в процессе роста

С возрастом сила мышечных сокращений увеличивается. Это объясняется не только увеличением мышечной массы, ни и совершенствованием двигательных рефлексов. Например, сила кисти с 5 до 16 лет возрастает в - 6 раз, мыши ног в 1 - 2,5 раза. Показатели силы до 10 лет больше у мальчиков. С 10 - 12 лет у девочек. Способность к быстрым и тонким движениям достигает оптимума к 14 годам, выносливость к 17. В 10 - 11 лет ребенок способен выполнять работу мощностью 100 вт, 18 -19- летние 250 - 300 вт.

Зарубежные ученые, видя, что одними гуморальными теориями утомления не объяснить, стали заниматься изучением утомляемости нервных проводников. Они утверждали, что под влиянием длительного прохождения импульсов возбуждения (например при раздражении электрическим током) нервные проводники утомляются.

Русский же физиолог Н. Е. Введенский, подвергнув критике ряд ошибок в опытах западных ученых, доказал на фактах, что нервные проводники практически неутомляемы и что в нервах физиологическое проведение возбуждения происходит с минимальной тратой энергии. Следовательно, причина утомления крылась не в мышце и не в нервном проводнике. Естественно, что мысль ученых обратилась к изучению работоспособности нервных клеток.

Одним из первых, кто на ярком и интересном опыте сумел показать, куда тянутся нити утомления, был И. М. Сеченов. Усиленное изучение вопросов физиологии труда в нашем отечестве началось именно его блистательными работами. Прекрасные исследования И. М. Сеченова «Участие нервной системы в рабочих движениях человека» и «Очерк рабочих движений человека» и по сей день служат настольными руководствами для исследователей, изучающих физиологию труда. Занимаясь вопросами утомления, И. М. Сеченов искал не только причины утомления, но и стремился найти рациональные меры борьбы с этим состоянием.

Вообразим Ивана Михайловича Сеченова, сидящего за простым прибором, несколько напоминающим описанный выше эргограф. Только на сеченовском эргографе работал уже не один палец, а вся рука, движения которой были подобны тем, какие совершаются при пилке дров. Груз в определенном ритме поднимается и опускается с каждым взмахом руки. Проходит 4 часа, рука уже сделала 4800 движений, высота поднятия груза все более и более уменьшается, надвигается утомление. С этим неотвратимым явлением решает вступить в борьбу пытливый ум ученого, он ищет то «целебное лекарство», которое бы могло устранить утомление.

Ученый находит, что кратковременная работа левой руки снимает утомление правой руки гораздо быстрее, чем длительный отдых.

И. М. Сеченов объяснил это следующим образом: кратковременная работа левой (не работающей) рукой рождает в чувствующих нервах мышц импульсы возбуждения, несущиеся в центральную нервную систему, где они как бы перестраивают работу нервной системы, возбуждая и освежая ее, настраивая на новый плодотворный рабочий ритм. Если это так, рассуждал И. М. Сеченов, значит и легкое электрическое раздражение левой руки также должно снимать утомление. На самом деле так и оказалось: как внешние благотворные раздражения, сообщающие нам хорошее и приятное настроение (песня и музыка, соревнование и интерес к работе), вызывая возбуждение анализаторов, * повышают работоспособность нервной системы и нашего мозга, так и незначительная работа незанятой трудом левой рукой или слабые электрические раздражения ее уменьшают утомление. Таким образом И. М. Сеченов показал, что сущность утомления коренится в процессах, происходящих в центральной нервной системе.

Изучением явления, открытого И. М. Сеченовым, занимались и занимаются многие советские физиологи (Н. К. Верещагин, С. И. Крапивенцева, М. Е. Маршак, Г. В. Попов, А. Д. Слоним и др.). В последнее время, например, советский ученый Ш. А. Чахнашвили показал, что восстановление работоспособности утомленной руки происходит не только при активном отдыхе, связанном с деятельностью другой руки, но и при кратковременной работе, производимой во время отдыха нижними конечностями, мышцами туловища и шеи, жевательными мышцами. Оказалось, что сокращение мышц шеи (при движении головы) в течение 10-секундного отдыха увеличивает восстановление работоспособности утомленной руки на 61-75% по сравнению с «пассивным» отдыхом той же продолжительности.

* Анализатор представляет собой комплексное образование, включающее в себя рецептор, чувствительный нерв и нервный центр в коре больших полушарий. Рецепторы (от латинского слова recipio - воспринимаю) это чувствительные нервные окончания в мышце или другом органе (глаз, ухо). Восприятие внешних и внутренних раздражений осуществляется не рецепторами, как таковыми, а всей системой анализатора в целом. Учение об анализаторах впервые введено в физиологическую науку .

© 2024 Спорт и жизнь