Вконтакте Facebook Twitter Лента RSS

Реакция перерождения типа а. Мышечный тонус при поражении периферического двигательного нейрона

Электровозбудимость определяют гальваническим и фарадическим током. При раздражении током мышцы или нерва, идущего к данной мышце, возникает мышечное сокращение. Раздражения осуществляют с определенных участков - двигательных точек. При раздражении фарадическим током возникает тетаническое сокращение мышцы, которое продолжается в течение всего времени прохождения тока. При раздражении гальваническим током мышца сокращается только в момент его замыкания и размыкания; сокращение происходит очень быстро, молниеносно, причем катодозамыкательное сокращение больше, чем анодозамыкательное (КЗС > АЗС).

Количественные изменения электровозбудимости проявляются в снижении или повышении пороговой силы раздражения. Так, при некоторых мышечных заболеваниях (миопатия) порог возбудимости повышается, и для получения мышечного ответа требуется ток значительной силы; при центральных параличах порог электровозбудимости снижается, небольшие по силе тока раздражения вызывают мышечное сокращение. При денервации мышцы в ней развивается дегенеративный процесс, мышечные волокна погибают, замещаются жировой и соединительной тканью. Электрическая реакция пораженных мышц качественно изменяется, возникает реакция перерождения (дегенерации): мышца не сокращается при раздражении фарадическим током, при раздражении гальваническим током возникает медленное «червеобразное» сокращение, причем анодозамыкательное сокращение становится больше катодозамыкательного (АЗС>КЗС). При раздражении нерва мышечного сокращения нет. Такое состояние электровозбудимости наступает на 12-15-й день после перерыва нерва или гибели клетки переднего рога и называется полной реакцией перерождения (РП).

Частичная РП возникает при неполном поражении периферического двигательного нейрона и характеризуется ослаблением возбудимости нервно-мышечного аппарата при раздражении фарадическим и гальваническим током. При раздражении гальваническим током сокращение мышц замедленное. Частичная реакция перерождения указывает на обратимость дегенеративных процессов в мышце. При длительной полной денервации мышцы (свыше 12 мес) в ней развиваются необратимые дегенеративные процессы, мышечная ткань заменяется жировой и соединительной, отсутствует реакция мышцы на раздражение фарадическим и гальваническим током - полная утрата электровозбудимости.

Качественные изменения иного характера происходят при миотонии и миастении. При миотонии наблюдается так называемая миотониче-кая реакция: раздражение мышцы сопровождается длительным сокращением, мышца медленно расслабляется. Для миастении характерна патологическая «утомляемость» мышцы. Каждое последующее мышечное сокращение сопровождается повышением порога возбудимости. Для получения эффекта требуется все большая сила тока, что связано с истощением сократительной способности мышц.

Хронаксиметрия. Для более тонкого исследования функционального состояния нервно-мышечного аппарата используется хронаксиметрия. При хронаксиметрии учитывают не только силу тока, но и время его прохождения. Хронаксиметрию проводят с помощью специальных приборов - хронаксиметров. Сначала определяют реобазу, т. е. минимальную силу постоянного тока, который при замыкании катода вызывает сокращение мышцы.

Хронаксией называется минимальное время, необходимое для вызывания сокращения при действии на нерв или мышцу током, равным по силе удвоенной реобазе.

В норме у мышцы и иннервирующего ее нерва одинаковая хронаксия (закон изохронизма нерва и мышцы). Все мышцы одной и той же функции (синергисты) в одном и том же сегменте имеют одинаковую, а мышцы-антагонисты - разную хронаксию. У проксимально расположенных мышц более короткая хронаксия, чем у дистальных.

В норме хронаксия различных мышц составляет от 0,0001 до 0,001 с. При периферических параличах хронаксия увеличивается, что может иметь значение для определения характера процесса. При восстановлении функции постепенно восстанавливается и хронаксия. При центральных параличах хронаксия укорачивается, усиливается расхождение в показателях хронаксии сгибателей и разгибателей на руках и уменьшается разница в цифровых показателях на ногах.

Может быть определена хронаксия не только эфферентных, но и афферентных систем: кожной чувствительности, оптической системы, вестибулярного аппарата. Чувствительная хронаксия позволяет судить о функциональном состоянии чувствительных анализаторов.

Электромиография - метод регистрации колебаний электрических потенциалов мышц - имеет большое значение в диагностике нервно-мышечных заболеваний. Электромиограмма (ЭМГ) отражает электроактивность, возникающую при возбуждении двигательных окончаний и мышечных волокон. Биотоки усиливаются в миллион и более раз, после чего записываются осциллографами в виде кривых.

Электромиографию производят при различных состояниях мышц: при расслаблении, при рефлекторных изменениях тонуса (во время напряжения других мышц, при эмоциональном напряжении, глубоком вдохе) и при произвольных сокращениях.

Отведение мышечных потенциалов осуществляется с помощью электродов: игольчатых (погружаемых в мышцу и регистрирующих биоэлектрические потенциалы отдельных мышечных волокон) и поверхностных. Поверхностные электроды регистрируют суммарную электрическую активность от многих мышечных волокон. При анализе электромиограмм учитываются величина амплитуд, частота колебаний потенциалов, а также общая структура осциллограмм (монотонность осцилляции или расчлененность на залпы, форма, длительность и частота залпов и т. п.).

У здорового человека в покое (при локальном отведении игольчатыми электродами) колебания биоэлектрических потенциалов не увеличиваются (на суммарной ЭМГ наблюдаются низкоамплитудные слабые колебания до 10-15 мкВ). Рефлекторное повышение тонуса

сопровождается небольшим усилением электрической активности (до 50-100 мкВ). При произвольном напряжении появляются частые высокоамплитудные колебания (1000 - 2000 мкВ).

ЭМГ имеют разную картину при двигательных нарушениях, обусловленных поражением центральной и периферической нервной систем и мышечного аппарата. Изменения биоэлектрической активности мышц связаны с топикой, тяжестью и стадией патологического процесса. Электромиография помогает в диагностике центральных, сегментарных (переднероговых и переднекорешковых), невритических и миопатических двигательных нарушений, позволяет обнаружить типичные нарушения биоэлектрической активности на ранней стадии заболевания при клинически мало выраженных симптомах, а также дает возможность наблюдать за динамикой процесса и эффективностью лечения (рис. 66).

При периферическом параличе с полной дегенерацией нервных и мышечных волокон потенциалы исчезают («биоэлектрическое молчание»). При поражении переднероговых структур спинного мозга отмечаются уменьшение частоты осцилляции, ритмичные потенциалы фасцикуляций с амплитудой до 300 мкВ и частотой 5-35 Гц («ритм частокола»).

При поражении периферических нервов наблюдается снижение амплитуды осцилляции, а при тяжелом поражении - полное отсутствие биоэлектрической активности в денервированных мышцах. Могут выявляться потенциалы фибрилляций, чаще неритмичных, с амплитудой до 200 мкВ. Для первично-мышечного поражения характерны снижение амплитуды биопотенциалов, укорочение длительности одиночного потенциала и увеличение процента полифазных потенциалов (в норме до 15-20%).

При центральных парезах снижается амплитуда колебаний (во время произвольных движений), в то же время при рефлекторных повышениях мышечного тонуса амплитуда резко увеличивается и появляются частые асинхронные колебания. На ЭМГ можно регистрировать специфические изменения при миотонии и миастении. Так, обнаруживается характерная «миотоническая задержка» - прогрессирующее снижение амплитуд колебаний. Экстрапирамидные гиперкинезы проявляются на ЭМГ залпами частых высокоамплитудных колебаний, возникающих на фоне низковольтной кривой.

Рис. 66. Типы электромиограммы. 1 - интерференционная запись при первично-мышечном процессе; 2, 3 - денервационный тип нарушения мышечного электрогенеза при поражении периферического нерва (2) и переднего рога спинного мозга (3).

Электронейромиография - комплексный метод исследования, включающий:

1) регистрацию и анализ параметров вызванных потенциалов (ВП) мышцы и нерва (латентный период, форма, амплитуда и длительность ВП);

2) определение числа функционирующих двигательных единиц (ДЕ);

3) определение скоростей проведения импульса (СПИ) по двигательным и чувствительным волокнам периферических нервов;

4) подсчет мотосенсорного и краниокаудального коэффициентов, коэффициентов асимметрии и отклонения от нормы.

В основе электронейромиографического метода лежит применение электрической стимуляции нерва с последующим анализом параметров вызванных потенциалов, регистрируемых с иннервируемой мышцы или с самого нервного ствола. Стимуляция нерва в двух точках, находящихся на определенном расстоянии друг от друга, позволяет вычислить время, в течение которого волна возбуждения проходит между точками стимуляции. Таким образом, оказывается возможным определить скорость проведения импульса по волокнам нерва.

Метод определения СПИ применим для любого доступного исследованию периферического нерва, однако в практике электронейромиографии чаще исследуют срединный, локтевой, большеберцовый, малоберцовый, реже локтевой и седалищный нервы (табл. 5). Топография некоторых нервов затрудняет стимуляцию их в двух точках. В этих случаях косвенное представление о СПИ дает измерение латентного периода М-ответа при однократном раздражении с одной точки. Таким образом исследуют мышечно-костный нерв руки, плечевое сплетение, бедренный нерв, лицевой, межреберный нервы (рис. 67).

М-ответ - вызванный потенциал мышцы, являющийся суммарным синхронным разрядом двигательных единиц мышцы в ответ на электрическое раздражение нерва. Обычно М-ответ регистрируется с помощью накожных отводящих электродов, которые более объективно, чем игольчатые, отражают суммарную активность мышцы. Пластины электродов помещают поперечно расположению волокон. При изучении М-ответа обращают внимание на интенсивность порогового раздражения, форму вызванного потенциала, его амплитуду и длительность. Форма М-ответа зависит от ряда факторов. При биполярном отведении М-ответ имеет негативную и позитивную фазы соответственно прохождению волны возбуждения над обеими электродными пластинками.

Н-рефлекс является моносинаптическим рефлекторным ответом мышцы при электрическом раздражении нерва и отражает синхронный разряд значительного числа двигательных единиц. Название «Н-рефлекс» соответствует первой букве фамилии Hoffmann, впервые описав шего этот ВП в 1918 г. Н-рефлекс является эквивалентом ахиллова рефлекса, в норме определяется только в мышцах голени. Однако у детей раннего возраста при незаконченной миелинизации пирамидной системы моносинаптический рефлекс вызывается также в мелких мышцах кисти и стоп. В отличие от М-ответа, обусловленного раздражением двигательных волокон нерва, Н-рефлекс вызывается раздражением чувствительных волокон. Импульс возбуждения направляется ортодромно к спинному мозгу, а затем по двигательным волокнам - к мышцам.

Таблица 5. Расположение стимулирующих и отводящих электродов

Исследуемый нерв Расположение стимулирующих электродов - точка раздражения Расположение отводящих электродов
проксимальная дистальная
Срединный На 3-5 см выше локтевой ямки, кнутри от плечевой артерии На 2 см проксимальнее поперечной связки запястья в середине между сухожилиями длинной ладонной мышцы и лучевого сгибателя кисти Над центром возвышения большого пальца
Локтевой Над углублением в локтевой кости (около медиального мыщелка) На 2 см проксимальнее поперечной связки запястья (несколько медиальнее сухожилия локтевого сгибателя кисти) Над латеральным краем возвышения мизинца
Седалищный В ягодичной области между большим вертелом бедра и седалищным бугром или прямо под этой точкой, на линии, идущей вниз к верхней части надколенной ямки Кзади от медиальной лодыжки Над мышцей, отводящей V палец (ответ с короткого разгибателя пальцев регистрируется только при стимуляции малоберцового нерва)
Задний большеберцовый В центре подколенной ямки Тоже Над основанием I и V метатарзальной кости с подошвенной стороны стопы
Малоберцовый Кнутри от латерального края подколенной ямки (медиальнее головки малоберцовой кости) Кнаружи от сухожилия длинного разгибателя пальцев, несколько ниже уровня латеральной лодыжки (дистальнее и спереди от головки малоберцовой кости) Над коротким разгибателем пальцев стопы (наиболее выступающая часть мышцы)
Лицевой Над околоушной железой, кпереди от мочки уха Над мимическими мышцами: а) лобной мышцей, над бровью; б) круговой мышцей глаза у наружного края глаза; в) круговой мышцей рта у yгла рта
Плечевое сплетение Раздражение сплетения в области шеи Над мышцами плечевого пояса: а) дельтовидной; б) трехглавой; в) двуглавой; г) надостной; д) подостной
Мышечно-кожный В подмышечной впадине, кзади от передней складки Над брюшком трехглавой мышцы плеча
Бедренный Вдоль бедренного нерва на его пути из-под паховой связки вниз по передней поверхности бедра Над четырехглавой мышцей бедра (на 14-16 см дистальнее стимулирующего электрода)

При постепенном увеличении интенсивности раздражения нерва выявляется своеобразное соотношение в динамике изменения амплитуды рефлекторного (Н-рефлекс) и прямого (М-ответ) ответа от мышцы. Н-рефлекс появляется при силе раздражения, подпороговой для М-ответа. По мере возрастания амплитуда Н-рефлекса достигает максимума и начинает уменьшаться, а амплитуда М-ответа увеличивается.

При силе раздражения, супрамаксимальной для М-ответа, Н-рефлекс, как правило, уже не определяется. При электронейромиографическом исследовании изучаются следующие параметры Н-рефлекса: латентность, форма, амплитуда, длительность. При фоторегистрации Н-рефлекса необходимо фиксировать последовательно изменяющееся соотношение Н- и М-ответов.

Потенциал действия (ПД) нерва обусловлен электрической активностью волокон периферических нервов в ответ на электрическое раздражение нервного ствола. ПД нерва является суммарным потенциалом действия, складывающимся из потенциалов отдельных нервных волокон разного диаметра и степени миелинизации.

Рис. 67. Определение скорости проведения импульса по двигательным и чувствительным волокнам срединного нерва и схема вызванных ответов мышцы и нерва.

Потенциал действия: 1 - нерва; 2-мышцы; А - проксимальная точка раздражения; Б - дистальная точка раздражения; В - отводящий электрод.

ПД афферентных волокон регистрируется кольцевыми пальцевыми электродами при стимуляции ствола нерва или, наоборот, со ствола нерва при стимуляции концевых его ответвлений. Кроме того, ПД эфферентных волокон можно регистрировать при избирательной стимуляции двигательных волокон нерва, изолированно от чувствительных волокон. В клинической практике исследование ПД двигательных волокон обычно не проводится в связи с его малой амплитудой, поэтому, говоря о ПД нерва, имеют в виду ПД чувствительных волокон. При изучении ПД нерва обращают внимание на интенсивность порогового раздражения, форму и амплитуду вызванного потенциала. Порог раздражения (порог ПД нерва) обычно ниже порога М-ответа. При постоянном наращивании силы раздражения амплитуда ПД нерва увеличивается, а затем может несколько уменьшаться при раздражении, супрамаксимальном М-ответу. Повышение порога раздражения наблюдается при денервационных процессах. ПД нерва обычно двухфазный, негативная фаза непрерывно переходит в позитивную.

Двигательная единица (ДЕ) является элементарной частицей нервно-мышечного аппарата. Термин «двигательная единица» введен Шеррингтоном для обозначения комплекса, состоящего из двигательной нервной клетки, ее аксона и группы мышечных волокон, иннервируемых этим аксоном.

Метод определения числа функционирующих ДЕ в мышцах thenar основан на феномене дискретного ступенчатого нарастания амплитуды мышечного ответа (М-ответа) при плавном постепенном увеличении силы раздражающего тока. Дискретность увеличения амплитуды объясняется включением в двигательный акт все новых ДЕ. Количество ДЕ определяется по формуле:

n = А /а,

где А - максимальная амплитуда М-ответа; а - амплитуда отдельной ДЕ; n-число ДЕ.

Уменьшение числа функционирующих ДЕ наблюдается при поражении центрального и периферического двигательных нейронов. При миодистрофии уменьшение количества ДЕ менее значительно.

Изучение вызванных потенциалов мышц, полученных повторной стимуляцией нерва, направлено прежде всего на выявление нарушений нервно-мышечной синаптической передачи и патологической нервно-мышечной утомляемости. О наличии нервно-мышечного утомления судят по снижению амплитуды М-ответа при повторной электрической стимуляции нерва. Диагностическим критерием миастенического синдрома является наличие феномена декремента (прогрессирующего снижения амплитуды М-ответа) при частоте стимуляции 30-50 имп/с.

При характеристике декремента обращают внимание на частоту и длительность стимуляции, вызвавшей его, а также на глубину декремента (степень снижения амплитуды М-ответа от исходной, выраженная в процентах). При исследовании нервно-мышечной утомляемости используют также фармакологические тесты.

Методика определения СПИ по периферическим нервам основана на сопоставлении латентных периодов ВП при электрическом раздражении двух точек нерва, находящихся на некотором расстоянии друг от друга. СПИ по периферическим нервам вычисляется по формуле.

v = S/T,

где v -скорость проведения импульса, м/с; S - расстояние между проксимальной и дистальной точками раздражения нерва, мм; T- разность латентных периодов (ПД нерва - для чувствительных, М-ответа-для двигательных волокон), мс.

Некоторые исследователи используют метод определения СПИ по чувствительным волокнам периферических нервов путем регистрации вызванных потенциалов действия соматосенсорной зоны коры больших полушарий при стимуляции периферического нерва на разных уровнях, а также метод, основанный на определении разности латентных периодов Н-рефлекса.

Величина СПИ зависит от многих условий и прежде всего от диаметра нервного волокна, степени его миелинизации, температуры, кислотно-щелочного состояния, электролитного обмена в окружающей нерв ткани, возраста обследуемого, времени суток, лекарственных воздействий. СПИ неодинакова в разных сегментах нерва. Доказано, что СПИ прямо пропорциональна диаметру волокна. Выраженная в метрах в секунду, СПИ в 6 раз превышает диаметр волокна, выраженный в микрометрах. Указанная закономерность не является абсолютной в связи с тем, что ствол нерва обычно состоит из волокон разного диаметра и разной степени миелинизации.

Электронейромиография находит все более широкое применение в клинике нервных болезней. Метод наиболее информативен в диагностике заболеваний, сопровождающихся поражением периферических нервов (мононевриты, полиневриты, невральная амиотрофия, полиневропатии при эндокринных и коллагеновых заболеваниях, при которых наблюдается снижение СПИ по двигательным и чувствительным волокнам периферических нервов, снижение амплитуд вызванных потенциалов мышцы и нерва). В последние годы электронейромиография нашла применение также при изучении супрасегментарных пирамидных и экстрапирамидных поражений.

Электроэнцефалография - регистрация биотоков мозга. Функционирование центральной нервной системы сопровождается биоэлектрическими процессами. При возбуждении в нервных клетках ионы перераспределяются, возникает разность потенциалов между заряжающимися электроотрицательно участками ткани. Разность потенциалов, возникающих в тканях мозга, очень мала (миллионные доли вольта), поэтому их регистрация и измерение возможны только при помощи высокочувствительных аппаратов - электроэнцефалографов, усиливающих и записывающих биопотенциалы мозга. В настоящее время применяются многоканальные электроэнцефалографы с перьевой записью. Отведение биотоков производится посредством серебряных и оловянных электродов, укрепляемых на коже различных отделов головы: лобных, височных, теменных, затылочных (рис. 68). В анестезиологической практике для контроля за уровнем наркоза во время операции чаще применяются игольчатые электроды. Существует монополярный способ записи ЭЭГ (активный электрод помещают в любой точке головы, а другой, пассивный, устанавливают на мочке уха) и биполярный (применение двух электродов, установленных в различных отделах головы - лобно-затылочные, лобно-височные, височно-затылочные и другие отведения). Исследование проводят в экранированной от помех свето- и звуконепроницаемой камере. Обследуемый должен максимально расслабиться. Случайные мышечные движения мешают исследованию, создавая дополнительные биотоки.

Для установления локализации патологического очага и выявления скрытых изменений применяют различные функциональные нагрузки (действие света, звука, гипервентиляции, умственной нагрузки и т. д.). Визуальный анализ электроэнцефалограммы (ЭЭГ) обнаруживает в ней наличие волн, различающихся по частоте колебаний, амплитуде (вольтажу), форме (синусоидальная, заостренная), регулярности, выраженности реакции на внешние раздражения.

Основными ритмами ЭЭГ здорового взрослого человека в состоянии покоя и бодрствования являются альфа- и бета-ритмы. У альфа-волн частота 8-12 колебаний в секунду с амплитудой 40-70 мкВ. Альфа-ритм регистрируется преимущественно над затылочными долями. При подаче светового раздражения у исследуемого наблюдается депрессия альфа-ритма.

Рис. 68. Электроэнцефалография.

А - основные отведения ЭЭГ; Б - схема зависимости основных электроэнцефалографических ритмов от возраста и функционального состояния мозга.

Бета-волны имеют частоту 16-30 колебаний в секунду, амплитуду 10-30 мкВ. Выражены преимущественно в передних отделах полушарий. Под влиянием внешних раздражений они меняются не так четко, как альфа-волны.

На ЭЭГ могут регистрироваться и другие типы волн: тета-волны с частотой колебаний 4-7 периодов в секунду и большой амплитудой (100-250 мкВ), дельта-волны - низкочастотные (1-3 периода в секунду) и высокоамплитудные колебания (50-150 мкВ), а также комплексы, состоящие из медленной волны и высокоамплитудного острого «пика». В норме у здорового взрослого человека тета- и дельта-волны, комплексы «пик-волна» отсутствуют.

Формирование ЭЭГ, характерной для взрослого, происходит постепенно. Первые вспышки медленных волн (частотой 0,3-0,5 в секунду) регистрируются на фоне «биоэлектрического молчания» мозга у эмбриона 1/4 мес. Постоянная биоэлектрическая активность появляется на 7-8-м месяце внутриутробного развития. К этому времени постепенно промежутки между вспышками медленных волн становятся меньше и полностью исчезают, частота волн увеличивается, достигая 6-8 в секунду. Максимально выражены биоэлектрические потенциалы в передних отделах мозга, преимущественно в двигательных прецентральных зонах коры больших полушарий. У новорожденных отсутствует биоэлектрическая активность в затылочных областях мозга; в прецентральных областях ритм колебаний равен 2-5 в секунду с примесью частот 10-13 периодов в секунду.

Периферический паралич всегда является следствием поражения перифе-рических двигательных нейронов и возникает как при поражении тел этих нейронов, расположенных в двигательных ядрах черепных нервов или в пе-редних рогах сегментов спинного мозга, так и их аксонов, входящих в состав различных структур периферической нервной системы, а также при блокаде нервно-мышечных синапсов. Избирательное поражение тел периферических двигательных нейронов ха-рактерно, в частности, для эпидемического полиомиелита и бокового амиотро-фического склероза. Поражение структур периферической нервной системы может быть следствием травмы, сдавления, инфекционно-аллергического по-ражения и т.д., ведущих к развитию радикулопатий, плексопатий, невропатий, моно- или полиневропатий. Несостоятельность нервно-мышечных синапсов, передающих нервный импульс с нервного окончания на мышцу с помощью медиатора ацетилхолина-Н, возникает при миастении, отравлении токсином ботулизма. Для периферического, или вялого, паралича характерны следующие признаки. 1. Полная обездвиженность. 2. Атония. Резко выраженное снижение мышечного тонуса. Мышца стано-вится вялой, тестообразной, аморфной, не реагирует на раздражители, лишена силы. При периферическом параличе конечности обычна избыточность пас-сивных движений в ее суставах. 3. Арефлексия. Исчезает рефлекторная реакция парализованных мышц в ответ на их внезапное раздражение, в частности растяжение, например, при ударе по сухожилию мышцы (сухожильные, или миотатические, рефлексы). Отсутствуют все рефлекторные двигательные реакции, в том числе защитные движения. 4. Атрофия. Если двигательный нейрон или его аксон погибают, то все свя-занные с ним мышечные волокна претерпевают глубокую денервационную атрофию. Со временем в связи с развитием атрофического процесса умень- шается масса денервированных мышц. В течение нескольких недель после травмы или начала болезни гипотрофия мышц может быть незаметной, однако в течение первых 4 мес денервированные мышцы теряют до 20—30% исходной массы, а в дальнейшем — до 70—80%. 5. Реакция перерождения, или реакция дегенерации, — извращение реакции на раздражение электрическим током парализованной мышцы и нефункцио-нирующего нерва. В соответствии со сформулированным в 1939 г. американским физиоло-гом У. Кенноном (Cennon W., 1871 — 1945) законом денервации рецепторы денервированных мышечных волокон приобретают гиперчувствительность к возбуждающему или тормозящему действию химических веществ (продукты метаболизма, токсины, лекарственные препараты, нейротрансмиттеры), до-стигающих этих рецепторов гематогенным путем.

Данная информация предназначена для специалистов в области здравоохранения и фармацевтики. Пациенты не должны использовать эту информацию в качестве медицинских советов или рекомендаций.

Центральный (спастический) паралич

А. В. Триумфов

Центральный паралич возникает в результате поражения центрального двигательного нейрона в любом его отделе. Так как расположение клеток и волокон пирамидных пучков довольно тесное, то центральные параличи обычно диффузны, распространяются на целую конечность или половину тела. Периферические же параличи могут ограничиваться поражением некоторых мышечных групп или даже отдельных мышц. Из этого правила, правда, могут быть и исключения. Так, небольшой очажок в коре головного мозга может обусловить возникновение изолированного центрального паралича стопы, лица и т.д.; и наоборот, множественное диффузное поражение нервов или передних рогов спинного мозга вызывает иногда распространенные параличи периферического типа.

Как было указано выше, симптоматология центрального паралича резко отличается от таковой при периферическом: здесь не характерны выраженные атрофии мышц и отсутствует реакция перерождения, не наблюдается ни атонии мышц, ни утраты рефлексов.

Незначительная диффузная атрофия мышц может иногда наблюдаться и при центральном параличе, но она никогда не достигает столь значительной степени, как при периферическом параличе, и не сопровождается типичной для последнего реакцией перерождения. Эта атрофия может быть результатом отсутствия деятельности мышц, но иногда она развивается рано, вслед за поражением; в таком случае она может быть объяснена как трофическое расстройство, возникающее в результате поражения коры (по некоторым данным - чаще теменной доли). В случаях остро возникающих центральных параличей (травма, кровоизлияние) возможна вначале гипотония мышц и утрата рефлексов. У И.П. Павлова находим указание, что при тромбозах и кровоизлияниях в больших полушариях, сопровождающихся параличом, а не «каталепсией» (т. е. не гипертонией. - Авт.), наблюдается даже отсутствие спинномозговых рефлексов.

«Ясно, что задерживающее (тормозное) действие происшедшего разрушения спустилось даже на спинной мозг…» Эта фаза обычно кратковременна и в большинстве случаев вскоре сменяется типичной картиной центрального паралича (с гипертонией мышц и повышением рефлексов).

Отсутствие расстройств, характерных для вялого паралича, понятно, так как периферический двигательный нейрон (и сегментарная рефлекторная дуга) при центральном параличе остается неповрежденным; следовательно, отсутствуют и симптомы, зависящие от его поражения. Остающийся неповрежденным сегментарный аппарат спинного мозга не только сохраняет свою рефлекторную деятельность, но и повышает ее, освобожденный при центральном параличе (повреждении пирамидной системы) от тормозящих (субординирующих) влияний коры головного мозга.

Основными чертами центрального паралича являются гипертония мышц, повышение сухожильных рефлексов, так называемые сопутствующие движения, или синкинезии, и патологические рефлексы.

Гипертония, или спастичность мускулатуры, определяет другое наименование центрального паралича - спастический. Мышцы напряжены, плотны на ощупь; при пассивных движениях ощущается ясное сопротивление, которое с трудом удается иногда преодолеть. Эта спастичность является результатом повышения рефлекторного тонуса и распределяется обычно неравномерно, что приводит к типичным контрактурам. При центральных параличах верхняя конечность обычно приведена к туловищу и согнута в локтевом суставе: кисть и пальцы также находятся в положении сгибания. Нижняя конечность разогнута в тазобедренном и коленном суставах, стопа согнута и повернута подошвой внутрь (нога распрямлена и «удлинена»). Такое положение конечностей при центральной гемиплегии создает своеобразную позу Вернике-Манна, истолкование закономерностей возникновения которой с точки зрения истории развития нервной системы дано М.И. Аствацатуровым.

Походка в этих случаях носит «циркумдуцирующий» характер: из-за «удлинения» ноги больному приходится (чтобы не задевать носком пола) «обводить» пораженной ногой.

Повышение сухожильных рефлексов (гиперрефлексия) является также проявлением усиленной, расторможенной, автоматической деятельности спинного мозга. Рефлексы с сухожилий и надкостницы крайне интенсивны и вызываются легко в результате даже незначительных раздражении: рефлексогенная зона значительно расширяется, т. е. рефлекс может быть вызван не только с оптимального участка, но и с соседних областей. Крайняя степень повышения рефлексов ведет к появлению клонусов (см. выше).

В противоположность сухожильным, кожные рефлексы (брюшные, подошвенные, кремастерные) при центральном параличе не повышаются, а исчезают или понижаются.

Сопутствующие движения, или синкинезии, наблюдаемые при центральном параличе, могут возникать в пораженных конечностях рефлекторно, в частности при напряжении здоровой мускулатуры. В основе возникновения их лежит наклонность к иррадиации возбуждения в спинном мозге на ряд соседних сегментов своей и противоположной сторон, в норме умеряемая и ограничиваемая корковыми влияниями. При расторможении сегментарного аппарата эта наклонность к распространению возбуждения выявляется с особенной силой и обусловливает появление «добавочных», рефлекторных сокращений в парализованных мышцах.

Существует целый ряд синкинезии, характерных для центрального паралича. Приведем здесь некоторые из них:

1) если больной по заданию оказывает здоровой рукой сопротивление разгибанию в локтевом суставе, производимому исследующим, или сильно пожимает ему здоровой кистью руку, то в парализованной руке происходит сопутствующее рефлекторное сгибание;

2) то же сгибание пораженной руки происходит при кашле, чихании, зевоте;

3) при упомянутых условиях в парализованной ноге (если больной сидит со свисающими за край кушетки или стола голенями) наблюдается непроизвольное разгибание;

4) лежащему на спине с вытянутыми ногами больному предлагают приводить и отводить здоровую ногу, в чем ему оказывают сопротивление. В парализованной ноге наблюдается при этом непроизвольное соответствующее приведение или отведение;

5) наиболее постоянным из сопутствующих движений при центральном параличе является симптом сочетанного сгибания бедра и туловища. При попытке больного перейти из горизонтального положения в сидячее (больной лежит на спине со скрещенными на груди руками и разведенными выпрямленными ногами), парализованная или паретическая нога приподнимается (иногда и приводится).

Патологические рефлексы являются группой весьма важных и постоянных симптомов центрального паралича. Особенное значение имеют патологические рефлексы на стопе, наблюдающиеся, понятно, в тех случаях, когда пораженной оказывается нижняя конечность. Наиболее чувствительными являются симптомы Бабинского (извращенный подошвенный рефлекс), Россолимо и Бехтерева. Остальные патологические рефлексы на стопе (см. выше) менее постоянны. Патологические рефлексы на руках выражены обычно слабо и большого значения в практике клинического исследования не приобрели. Патологические рефлексы на лице (главным образом группа «оральных» рефлексов) характерны для центрального паралича или пареза мускулатуры, иннервируемой черепными нервами, и указывают на двухстороннее надъядерное поражение tractus cortico-bulbaris в корковом, подкорковом или стволовом отделах.

Такие симптомы, как повышение сухожильных рефлексов конечностей, ослабление брюшных рефлексов и симптом Бабинского, являются весьма тонкими и ранними признаками нарушения целости пирамидной системы и могут наблюдаться тогда, когда поражение еще недостаточно для возникновения самого паралича или даже пареза. Поэтому диагностическое значение их весьма велико. Е.Л. Вендерович описал симптом «ульнарного двигательного дефекта», указывающий на очень легкую степень пирамидного поражения: на пораженной стороне слабее сопротивление больного насильственному отведению в сторону максимально приведенного к IV пальцу мизинца.

Приводится табл. 1 (по М.И. Аствацатурову) симптомов периферического и центрального параличей.

Методика исследования движений складывается из

1) изучения общего вида, мимики, речи, позы и походки больного,

2) определения объема и силы активных движений,

3) исследования пассивных движений и тонуса мускулатуры,

4) исследования координации движений

5) проверки электровозбудимости нервов и мышц. 

Уже один наружный осмотр больного может дать много существенного и направить внимание исследующего на тот или иной дефект в состоянии мускулатуры и двигательной функции. 

Таблица 1

Вид паралича Центральный или спастический Периферический, вялый, или атрофический
Локализация поражений Двигательная проекционная область коры или пирамидные пучки Передние рога спинного мозга, передние корешки и двигательные волокна периферических нервов
Распространение паралича Чаще диффузное Чаще ограниченное
Тонус мышц Гипертония, спастичность Гипотония, вялость
Рефлексы Сухожильные повышены, брюшные и подошвенные утрачены или понижены Сухожильные и кожные утрачены или понижены
Патологические рефлексы Симптом Бабинского и др. Отсутствуют
Сопутствующие движения Имеются »
Атрофия мышц Отсутствует Имеется
Реакция перерождения » »

Так, сразу же могут быть установлены атрофии мышц, контрактуры конечностей. Иногда обращает на себя внимание поза больного, малая или, наоборот, избыточная подвижность его. В беседе с больным может быть подмечен парез мимической мускулатуры, расстройства речи, нарушения фонации. Заметны дрожание, судорожные подергивания и т.д. Обязательно исследуется походка больного, которая может оказаться расстроенной. В частности, при гемипарезе центрального типа отмечается «гемиплегическая, циркумдуцирующая» походка, поза Вернике-Манна, о чем было сказано выше. При спастическом нижнем парапарезе наблюдается «спастическая» или «спастически-паретическая» походка, когда больной ходит с распрямленными ногами, не отрывая подошвы от пола; при движениях ног заметна существующая в них напряженность. При вялом парапарезе обычно свисают стопы, и больной, чтобы не задевать носком пола, принужден высоко поднимать ногу (так называемая «петушиная», или перонеальная походка).

Активные движения исследуются в порядке сверху вниз; обычно определяется объем только некоторых основных движений.

На лице исследуется наморщивание лба кверху, смыкание век, движения глазных яблок, открывание рта и оттягивание углов рта кнаружи, высовывание языка.

Определяется объем поворота головы в стороны. Предлагается исследуемому произвести движение поднятия плеч («пожимание» плечами). Производится поднимание рук до горизонтали и выше; сгибание и разгибание в локтевом, лучезапястном и пальцевых суставах; пронация и супинация кистей; сведение и разведение пальцев; для определения легкой степени пареза и расстройства тонких движений целесообразно предложить исследуемому делать быстрые сгибательные и разгибательные движения пальцами, перебирая ими в воздухе при вытянутых вперед руках.

Производится сгибание и разгибание в суставах тазобедренных, коленных, голеностопных, пальцевых, ходьба на пятках и на носках.

В необходимых случаях приходится по ходу исследования проверять более тонкие и изолированные движения, касающиеся отдельных мышц.

Не всегда наличие полного объема активных движений исключает возможность существования легкого пареза, который может в таких случаях ограничиваться ослаблением мышечной силы. Поэтому исследование объема активных движений конечностей обычно сопровождается одновременным исследованием и мышечной силы, для чего исследуемый оказывает производимому движению известное противодействие. Определяется сила сжатия кисти, которая может быть измерена динамометром.

Пассивные движения, понятно, не будут ограничены в случае наличия полного объема активных движений. Их исследование необходимо при установлении отсутствия или ограничения активных движений в той или иной мышечной группе. Может оказаться, что движения ограничены не из-за пареза, а из-за поражения суставов, вследствие болей и т.д. Исследование пассивных движений производится также с целью определения мышечного тонуса.

Тонус определяется прежде всего ощупыванием находящейся в покое мышцы. При атонии или гипотонии мышцы на ощупь дряблы, вялы; при гипертонии - плотны, напряжены. При пассивных движениях в случае атонии экскурсии в суставах совершенно свободны, даже избыточны; суставы «разболтаны». При повышении тонуса пассивные движения встречают значительное сопротивление, для преодоления которого необходимо известное напряжение. При спастичности мускулатуры, сопровождающей центральный паралич, наблюдается явление, которое называется «симптомом складного ножа»: если мы производим быстрое пассивное движение, то сопротивление, оказываемое ригидной мускулатурой, не на всем протяжении движения одинаково; оно особенно ощущается вначале и уменьшается в дальнейшем.

Координация движений нарушается в результате поражения мозжечковой системы и при утрате «чувства положения и движения» (суставно-мышечного чувства).

«Топическая диагностика заболеваний нервной системы»

ЭЛЕКТРОДИАГНОСТИКА - метод исследования функционального состояния нервов и мышц, основанный на определении их реакции на электрическое раздражение (электровозбудимости).

Традиционно электродиагностика применялась главным образом с целью диагностики двигательных нарушений. Позднее электродиагностику стали использовать для исследования состояния чувствительной иннервации. Так, разновидностью электродиагностики является электроодонтодиагностика - определение порогов возбуждения болевых и тактильных рецепторов пульны зуба или периодонта при раздражении электрическим током (см. ниже).

Электродиагностика как метод исследования двигательных расстройств основана на свойстве нервно-мышечного аппарата приходить в состояние возбуждения иод влиянием раздражения электрическим током. Результатом возбуждения является сокращение мышц, характер которого зависит от функционального состояния нерва, мышцы и позволяет судить о тяжести поражения этих образований.

Электродиагностика может проводиться различными способами. Классическая электродиагностика основана на определении пороговой силы электрического раздражения нерва или мышцы, вызывающего мышечное сокращение, и исследовании качественных характеристик этого сокращения. Разновидностями электродиагностики являются хронаксиметрия (см.) и определение скорости проведения нервного импульса (см. Электромиография).

Наиболее простой по технике проведения и интерпретации показателей является классическая электродиагностика. Основы этого метода были заложены в 19 веке работами Э. Дюбуа-Реймона, а затем Э. Пфлюгера, В. Эрба, Кона (T. Cohn), Ремака (E.J. Remak) и др. В развитии метода большое значение имели работы отечественных ученых Н. Е. Введенского, А. А. Ухтомского, В. А. Греченина, Н. И. Коротнева, П. К. Анохина, А. Н. Обросова и Н. М. Ливенцева и др. (см. Возбудимость , Возбуждение , Лабильность , Мышцы , Нервный импульс , Нервы).

Классическая электродиагностика позволяет уточнить тяжесть и уровень поражения нервно-мышечного аппарата, объективно проследить за динамикой возбудимости нерва и мышцы в ходе лечения, определяет выбор параметров для проведения электростимуляции (см.). Основными показаниями к проведению классической электродиагностики являются поражения периферического двигательного нейрона, протекающие с вялыми парезами и параличами,- полиомиелит (см.), травмы спинного мозга, радикулит (см.), неврит (см.), плексит (см.) и др.; системные заболевания мышц - миопатия (см.), миастения (см.) и др.; вторичные атрофии скелетных мышц, наступившие вследствие длительной иммобилизации (при переломах) или ограничения подвижности верхних и нижних конечностей при заболеваниях опорно-двигательного аппарата, функциональные (истерические) парезы и параличи (см. Атрофия мышечная).

Классическая электродиагностика противопоказана при индивидуальной непереносимости электрического тока, состоянии перевозбуждения нервно-мышечного аппарата (повышенная возбудимость мышц, гиперкинезы, тика и др.), при контрактуре мышц верхних и нижних конечностей и лица, выраженном болевом синдроме, вывихах, переломах костей до осуществления постоянной иммобилизации, в раннем периоде (2-3 недели) после операции на нерве или крупном сосуде (шов, пластика и др.), при тромбофлебите, остром гнойном процессе в зоне исследования, кровотечении.

Для раздражения нервно-мышечных структур используют импульсный ток частотой 100 гц с импульсами треугольной или прямоугольной формы длительностью 1-1,5 мсек - тетанизирующий ток (см. Импульсные токи), а также постоянный (гальванический) ток. В качестве генераторов электрических токов применяют специальные приборы - электростимуляторы, например двухканальный электронейростимулятор ЭНС-01. Приборы подобного типа представляют собой генераторы прямоугольных или пилообразных импульсов положительной или отрицательной полярности с независимой регулировкой временных и амплитудных параметров. Максимальное значение амплитуды импульсов на выходе - 100 в (200 ма), длительность импульсов - 10 -5 - 10 секунд, предусматривается возможность ручной регулировки параметров выходных импульсов. Электродиагностические приборы обеспечивают высокую точность установки параметров выходных электрических импульсов и их стабильность.

При проведении классической электродиагностики применяют пластинчатые, а также пуговчатые (одинарные и раздвоенные) электроды (см.) с кнопочным прерывателем на рукоятке (рис. 1).

Раздражение наносят в так наз. двигательных точках нервов и мышц. Двигательная точка нерва - участок, где нерв расположен наиболее поверхностно и доступен исследованию. Двигательная точка мышцы - место, соответствующее зоне внедрения и разветвления нерва в мышце. Локализацию двигательных точек ориентировочно определяют по специальным таблицам (рис. 2) и более точно - путем небольших пробных перемещений электрода. Раздражая двигательную точку нерва, определяют непрямую электровозбудимость мышцы, а воздействуя на мышцу, определяют ее прямую возбудимость. Для точного суждения о состоянии электровозбудимости необходимо проверять как прямую, так и непрямую электровозбудимость мышцы.

При одностороннем поражении исследование рекомендуется начинать со «здоровой» стороны, а затем переходить на пораженную сторону. Перед исследованием рекомендуется рассказать больному об ощущениях, которые он может испытывать во время процедуры, и убедить в безопасности метода.

Исследование начинают с последовательного раздражения токами сначала нервного ствола, а затем мышц, им иннервируемых. Методика может быть однополюсной или двухполюсной. При однополюсной методике активный пуговчатый электрод (катод) площадью 1-1,5 см 2 с кнопочным прерывателем на рукоятке устанавливают на двигательной точке, второй пластинчатый электрод (анод) площадью 100-150 см 2 фиксируют на задней срединной линии тела в межлопаточной (при исследовании лица и верхних конечностей) или в поясничной (при исследовании нижних конечностей) области. К двухполюсной методике прибегают реже, в основном при значительном снижении электровозбудимости. При этом используют раздвоенный электрод с кнопочным прерывателем. Один электрод служит катодом, другой - анодом, площадь обоих электродов одинакова. Электроды располагают вдоль исследуемой мышцы.

С каждой двигательной точки определяют пороговую реакцию на воздействие тетанизирующим, а затем гальваническим током. Характер мышечных сокращений оценивают визуально или пальпаторно. В норме воздействие на нерв или мышцу тетанизирующим током пороговой силы вызывает тетаническое мышечное сокращение, длящееся в течение всего времени прохождения тока. На раздражение гальваническим током пороговой силы нерв и мышца отвечают одиночными сокращениями, возникающими в момент замыкания и размыкания электрической цепи. При пороговой силе тока раздражающее действие катода в норме сильнее, чем действие анода, а сокращение мышцы при замыкании цепи более сильное, чем при размыкании. Эта зависимость отражена в так называемой полярной формуле: КЗС> АЗС > АРС > КРС, где КЗС - катодозамыкательное сокращение, то есть сила сокращения мышцы под катодом при замыкании цепи, АЗС - анодозамыкательное сокращение, АРС и КРС - соответственно анодоразмыкательное и катодоразмыкательное сокращения.

В зависимости от степени поражения нервно-мышечного аппарата изменения электровозбудимости могут носить количественный или качественный характер. Количественные изменения характеризуются изменениями пороговой величины силы тока. Повышение этого показателя указывает на снижение электровозбудимости и наблюдается при некоторых формах миопатии, вторичных атрофиях мышц и при легкой степени поражения периферического двигательного нейрона. Снижение пороговой силы тока свидетельствует о повышении электровозбудимости и имеет место, например, при формирующихся мышечных контрактурах, спастических парезах и параличах, при писчем спазме (см. Писчий спазм). Качественные изменения электровозбудимости наблюдаются при тяжелом поражении периферического двигательного нейрона. При этом отмечается своеобразная реакция нерва и мышц на электрический ток - реакция перерождения, или дегенерации.

Реакция перерождения характеризуется неравномерностью падения электровозбудимости нерва и мышц (возбудимость нерва снижается и исчезает быстрее, чем возбудимость мышц, им иннервируемых), гальванотетанизирующей диссоциацией (возбудимость мышц в ответ на воздействие тетанизирующим током падает, а на воздействие гальваническим током - повышается). Наряду с этим качественно изменяется характер мышечного сокращения - живое сокращение, наблюдаемое в норме, становится вялым, червеобразным, нарушаются взаимоотношения полюсов в формуле мышечного сокращения. Одновременно отмечается смещение двигательных точек, быстрое падение силы мышечного сокращения по мере неоднократного раздражения (реакция истощения), запаздывание сокращения в ответ на раздражение (реакция запаздывания). Однако из всех указанных признаков основным показателем реакции перерождения признан вялый характер мышечного сокращения.

По степени выраженности различают частичную (типа А или Б) и полную реакцию перерождения. Диагностическое и прогностическое значение этих реакций различно. Более благоприятной является частичная реакция перерождения, она свидетельствует о возможности обратного развития процесса.

Частичная реакция типа А проявляется сниженной возбудимостью нерва и мышцы на оба вида тока, вялостью сокращения и уравниванием полярной формулы. Частичная реакция типа Б характеризуется отсутствием возбудимости нерва и мышцы при воздействии тетанизирующим током и сохранением ее при воздействии гальваническим током при значительном повышении или понижении силы тока. Сокращение мышцы вялое, червеобразное, формула мышечного сокращения извращена или уравнена. Полная реакция перерождения характеризуется сохранением возбудимости мышц только на воздействие гальваническим током, возбудимость нерва утрачена на оба вида тока. Сокращение червеобразное, формула мышечного сокращения извращена. Терминальной стадией является полная утрата электровозбудимости - состояние, когда ни нерв, ни мышца не отвечают на воздействие ни одним видом тока. Это наблюдается при фиброзе мышцы, обусловленном ее полной денервацией.

Кроме реакции перерождения выявляют миотоническую и миастеническую реакции. Миотоническая реакция характеризуется вялым тетаническим сокращением мышцы, продолжающимся и после размыкания тока, на фоне повышенной возбудимости и извращения полярной формулы. Эта реакция наблюдается при миотонии (см.). Миастеническая реакция характеризуется тем, что при продолжительном раздражении нерва или мышцы тетанизирующим током, наступившее вначале сокращение мышцы прекращается, и для его восстановления необходим отдых. Она наблюдается при миастении (см.), а также является одним из проявлений реакции перерождения.

Электроодонтодиагностика основана на определении порогового возбуждения болевых и тактильных рецепторов пульпы зуба или периодонта при раздражении электрическим током. Электрический ток, преодолевая высокое сопротивление минерализованных тканей зуба, эмали и дентина, достигает пульпы, вызывая ответную реакцию в виде ощущения слабого укола, жжения или толчка. Благодаря тому, что величину тока можно точно дозировать, даже многократное раздражение пульпы не оказывает повреждающего действия на ее ткани. При патологических процессах в зубе и околозубных тканях изменяется порог возбудимости рецепторов пульпы зуба.

Данные электроодонтодиагностики могут быть использованы для диагностики, дифференциальной диагностики и контроля за эффективностью проводимого лечения при заболеваниях зубов и периодонта, травмах, опухолях челюстей, гайморите, остеомиелите челюсти, актиномикозе, неврите и невралгии лицевого или тройничного нервов.

У детей существует тесная связь между стадией развития зуба, ростом его корней и электровозбудимостью пульпы. В начальный период прорезывания зуба реакция на электрический ток либо отсутствует, либо резко снижена. По мере роста корней зуба электровозбуди мость повышается и достигает нормы к периоду завершения их формирования. Эта закономерность связана с развитием нервно-рецепторного аппарата пульпы зуба, происходящим параллельно с ростом корней зуба.

Исследование проводят с помощью специальных электростимуляторов - электроодонтометров, напр. отечественных приборов ЭОМ-1 и ЭОМ-3 (см. рис. 6 к ст. Стоматологическая техника). Эти приборы обеспечивают прямоугольную форму выходных импульсов. Величина выходного тока не превышает, как правило, 200 мка, частота следования импульсов, используемая в различных приборах, колеблется от единиц и даже долей герца до нескольких десятков герц.

Подвергаемые исследованию зубы изолируют от соседних участков полости рта тампонами, высушивают ватными шариками. Индифферентный электрод помещают на руку больного, а активный в виде металлической иглы - на середину режущего края (резцов и клыков) или на вершину щечного бугра (премоляров и моляров). При наличии кариозной полости активный электрод помещают на ее дно последовательно в нескольких точках. Ориентиром возбудимости служит минимальная сила тока, вызывающая ощущение слабого укола в пульпе зуба. Если на месте чувствительной точки расположена пломба, то электрод помещают или на пломбу, или рядом, но полученные данные могут носить лишь ориентировочный характер. Для точного определения порога возбудимости удаляют пломбу и проводят исследование, помещая активный электрод на дно кариозной полости. В норме пороговая величина тока составляет 2-6 мка.

При заболеваниях зубов и околозубных тканей, как правило, отмечается повышение порога возбудимости рецепторов пульпы. Увеличение пороговой силы тока в пределах 7-60 мка свидетельствует о преимущественном поражении пульпы коронки, в пределах 60- 100 мка - пульпы корня. Увеличение пороговой силы тока св. 100 мка указывает на полную гибель пульпы, и появление субъективных ощущений в этом случае обусловлено возбуждением тактильных рецепторов периодонта; причем при наличии патол. изменений в периодонте ответная реакция может возникать лишь на ток от 200 до 400 мка. При нек-рых заболеваниях (начальная стадия пародонтоза, неврит лицевого нерва) иногда отмечается снижение порога возбудимости до 1,5-0,5 мка, что является ранним диагностическим признаком этих процессов.

Вследствие того, что электровозбудимость пульпы зуба широко варьирует при различных заболеваниях, количественные показатели при электроодонтодиагностике необходимо рассматривать не изолированно, а в сочетании с результатами других методов обследования.

Библиогр.: Антропова М. И. Классическая электродиагностика при невритах лицевого нерва, М., 1971, библиогр.; Байкушев Ст., Манович 3. X. и Новикова В. П. Стимуляционная электромиография и электронейрография в клинике нервных болезней, М., 1974; Ефанов О. И. и Дзанагова Т. Ф. Физиотерапия стоматологических заболеваний, М., 1980; Клинико-электронейромиографическое изучение нервно-мышечных заболеваний и синдромов, под ред. Л. О. Бадаляна и И. А. Скворцова, М., 1982; Коротнев Н. И. Основы электротерапии и электродиагностики, т. 1, в. 1-2, М., 1926-1927; Коуэн X. Л. и Бруклин Дж. Руководство по электромиографии и электродиагностике, пер. с англ., М., 1975, библиогр.; Многотомное руководство по неврологии, под ред. С. Н. Давиденкова, т. 2, с. 355, М., 1962; Обросов А. Н. и Ливенцев Н. М. Электродиагностика и электростимуляция мышц при поражении периферических нервов. М., 1953, библиогр.; Рубин Л. Р. Электроодонтодиагностика, М., 1976; Справочник по физиотерапии, под ред. А. Н. Обросова, М., 1976.

М. И. Антропова; О. И. Ефанов (электроодонтодиагностика); В. А. Михайлов, Р. И. Утямышев (техн.).

Электродиагностика - это метод исследования функционального состояния нервов и мышц при помощи раздражения их электрическим током. В оценке состояния нервно-мышечного аппарата основную роль играет характер мышечного сокращения. При раздражении здоровой мышцы отмечаются живые, быстрые сокращения, а дегенерирующая мышца отвечает замедленным, вялым сокращением. Для определения количественных изменений сопоставляют пороги электровозбудимости на здоровой и пораженной сторонах. Для этого используют как переменный, так и постоянный ток; электроды накладывают на двигательную точку - место вхождения нерва в мышцу.

Метод исследования функционального состояния чувствительных нервов зуба при помощи раздражения электрическим током - используется в для определения степени патологических изменений пульпы или периодонта.

Исследование электровозбудимости позволяет не только ставить диагноз, но и следить за динамикой патологического процесса, контролировать эффективность применяемой терапии, определять прогноз.

Электродиагностика - это метод исследования реакции нервов и мышц на раздражение электрическим током. При патологии возбудимость ткани может изменяться в широких пределах: от повышения до полного отсутствия. Исследование возбудимости позволяет определить состояние ткани и тем самым уточнить диагноз. Именно это и обусловливает широкое применение электродиагностики в клинике.

О степени возбудимости судят по минимальной (пороговой) силе раздражителя, способной вызвать возбуждение. Минимальная интенсивность раздражения, за пределами которой беспредельное увеличение продолжительности его действия оказывается неэффективным, называется реобазой. Минимальное время, при котором интенсивность, равная реобазе, вызывает возбуждение, называется полезным временем.

Рис. 1. Графическое изображение тока, получаемого от индукционной катушки.

Для исследования возбудимости нервов и мышц используется несколько форм тока. Классическая электродиагностика, т. е. метод, который был разработан его основоположниками, сводилась к исследованию возбудимости при помощи так называемого фарадического и постоянного тока. Для получения фарадического тока применяли индукционные катушки, при помощи которых в исследуемый нервно-мышечный аппарат посылались 20-30 импульсов в 1 сек. (графическое изображение этого тока представлено на рис. 1). Раздражения следовали одно за другим с такой частотой, что мышца приходила в состояние тетануса. При поражениях периферического двигательного неврона реакция на раздражение током этой формы может не наступить: получаемые при этом импульсы могут оказаться недостаточными для возбуждения патологически измененной ткани. Отсутствие реакции на этот ток не означает полного отсутствия возбудимости, оно может свидетельствовать только о ее понижении. В последнее время вместо фарадического тока пользуются так называемым тетанизирующим током, мало отличающимся по форме и физиологическому действию от фарадического. Более полную картину состояния нервно-мышечного аппарата можно получить на основании исследования возбудимости постоянным током, при помощи которого можно обнаружить не только количественные, но и качественные изменения электровозбудимости. О последних судят по полярной формуле и характеру сокращения мышцы. Многочисленными исследованиями было установлено, что сила тока, необходимая для возникновения возбуждения нерва или мышцы, возрастает следующим образом: КЗС>АЗС>АРС>КРС (катодозамыкательное сокращение наступает при меньшем токе, чем анодозамыкательное; анодозамыкательное - раньше анодоразмыкательного; анодоразмыкательное - при меньшем токе, чем катодоразмыкательное). При поражениях нервно-мышечного аппарата может наступить извращение полярной формулы (АЗС>КЗС) и др., причины которого полностью не изучены. Несомненно лишь одно: в основе его наряду с серьезными изменениями в нервно-мышечном аппарате лежат нередко и чисто физические факторы - электропроводность тканей, непосредственно прилегающих к исследуемому участку нерва или мышцы, в результате чего анод вызывает возбуждение при меньшем токе, нежели катод (Л. Р. Рубин). Вот почему диагностическое значение извращения полярной формулы невелико. Исключительно большую роль в оценке состояния нервно-мышечного аппарата играет характер мышечного сокращения. В норме на раздражение мышца отвечает живым, молниеносным сокращением; при поражении двигательного нерва в соответствующих мышцах возникают дегенеративные процессы, проявляющиеся вялыми, червеобразными сокращениями.

Исследование электровозбудимости при классическом методе электродиагностики начинают с применения тетанизирующего тока. Определяя порог возбудимости сначала на здоровой, а потом на пораженной стороне, устанавливают наличие или отсутствие количественных изменений. После этого переходят к воздействию постоянным током, что позволяет определить и количественные, и качественные изменения электровозбудимости.

Для частичной реакции перерождения характерна следующая картина изменений электровозбудимости:

При полной реакции перерождения характерны следующие данные:

Отсутствие реакции мышцы на очень сильные, с трудом переносимые токи свидетельствует о гибели нерва и мышцы.

Изменения электровозбудимости не идут параллельно другим клиническим проявлениям поражения периферического двигательного неврона. В первые дни иногда наблюдается даже повышение возбудимости. Через 4-6 дней начинается постепенное понижение электровозбудимости нерва (иногда и мышцы), определяемое как тетанизирующим, так и постоянным током. Через 15-20 дней реакция нерва на оба вида тока исчезает, мышцы же реагируют только на раздражение постоянным током, причем порог их может быть даже понижен, хотя сокращения носят уже вялый характер. К этому же времени может наблюдаться извращение полярной формулы и смещение двигательной точки мышцы в направлении к ее дистальному концу. Такое состояние длится довольно долго (7-8 месяцев и больше). Исходом его может быть в случае регенерации нерва восстановление возбудимости (причем восстановление функции опережает появление реакции на раздражение током) или ее полное угасание (гибель мышцы).

Не при всех состояниях нервно-мышечного аппарата классическая электродиагностика позволяет точно исследовать возбудимость. При далеко зашедших поражениях периферического двигательного неврона (полная реакция перерождения) фарадический ток (частота импульсов - 20-30 в 1 сек.) не вызывает тетануса. Однако и в этих случаях можно вызвать тетаническое сокращение мышцы: надо только найти соответствующую частоту импульсов. Отклонение в ту или иную сторону от найденного оптимума частоты раздражений приводит (даже при значительном увеличении силы тока) к ослаблению тетануса. Чем лучше состояние нервно-мышечного аппарата, тем больше оптимальная частота. Таким образом, по частоте импульсов, способной вызвать тетанус, можно судить о состоянии мышцы, а тем самым и о динамике патологического процесса.

Исследование возбудимости при помощи постоянного тока сводится к посылке одиночных импульсов прямоугольной формы, для которых характерно очень крутое нарастание раздражения, что позволяет пороговую силу тока довести до минимума. Однако при тяжелых поражениях периферического двигательного неврона использование таких импульсов нецелесообразно, так как пороговая сила тока в этих случаях достигается раньше при более пологом, постепенном нарастании импульса. В ряде наблюдений установлено, что для денервированных мышц импульсы с постепенным нарастанием силы тока «физиологичнее» импульсов с быстрым увеличением силы тока. Поэтому для исследования таких мышц целесообразно пользоваться экспоненциально возрастающими импульсами тока. Таким образом, исследование импульсами экспоненциальной формы и определение оптимальной частоты, способной вызвать тетанус, служат существенным дополнением к классической электродиагностики.


Рис. 2. Активный электрод с прерывателем.


Рис. 3. Двигательные точки нервов и мышц головы и шеи: 1 - m. corrugator supercillii; 2 - m. orbicularis oculi; 3 - m. nasalis (pars transversa); 4 - m. orbicularis oris; 5 - m. depressor labii inf.; 6 - m. mentalis; 7 - точка Эрба (plexus brachialis); 8 - mm. scaleni; 9 - platysma; 10 - m. sternocleidoma stоideus; 11 - n. facialis (ramus inferior); 12 - n. facialis (ствол); 13 - m. nasalis (pars alaris); 14 - n. facialis (ramus medius); 15 - n. facialis (ramus superior); 16 - m. temporalis; 17 - m. frontalis.

Методика исследования электровозбудимости двигательных нервов и мышц сводится к следующему. Свинцовую пластинку толщиной 0,4 - 0,6 мм и площадью 300- 400 см 2 (пассивный электрод) соединяют шнуром с одним из полюсов источника тока. Под пластинку помещают смоченную теплой водой гидрофильную прокладку из 8-10 слоев белой фланели или байки (по размерам несколько больше пластинки во избежание ожогов при соприкосновении металла с кожей). Пассивный электрод с прокладкой укрепляют бинтом на область грудины или поясницы. Другой электрод (активный) представляет собой медную круглую пластинку диаметром 1 -1,5 см, припаянную к металлическому стержню, укрепленному в изолирующей ручке с прерывателем (рис. 2), что позволяет замыкать и размыкать цепь больного. Активный электрод соединяют с другим полюсом источника тока и помещают над двигательной точкой исследуемого нерва (мышцы). Существующие схемы двигательных точек всех доступных исследованию нервов и мышц (рис. 3-6) дают лишь общее представление об их топографии; только опыт позволяет быстро определить искомую двигательную точку. Отыскав ее, определяют их порог, начиная с очень слабых раздражений и постепенно усиливая. Всякое раздражение влияет на функциональное состояние ткани. При этом, чем интенсивность раздражения больше, тем резче сказывается его действие. Во избежание ошибки, обусловленной действием предшествующего раздражения, последующее раздражение следует нанести через 1-2 сек., а при заведомо патологических состояниях - через 5-10 сек. Нужно учесть, что исследованию возбудимости может мешать чрезмерное нагревание или охлаждение соответствующих участков тела, а также переутомление мышц. Больному следует придать положение, при котором исследуемые мышцы и их антагонисты находятся в максимально расслабленном состоянии. Исследование производят при хорошем освещении, чтобы уловить минимальные сокращения мышц. Если не удается вызвать реакцию с двигательной точки, активный электрод постепенно перемещают к концу мышцы, чтобы выяснить, не сместилась ли двигательная точка. Если и при этом не удается вызвать сокращение, переходят к исследованию «биактивным» методом, при котором на концы мышцы накладывают два маленьких электрода - так называемый биактивный электрод (рис. 7).


Рис. 4. Двигательные точки нервов и мышц руки:
а - передняя поверхность: 1 - m. coracobrachialis; 2 - n. medianus; 3 - m. biceps brachii; 4 - n. medianus; 5 - m. pronator teres; 6 - m. flexor carpi ulnaris; 7 - m. palmaris longus; 8 - m. flexor digitorum superficialis; 9 - n. ulnaris; 10 - n. medianus; 11 - m. abductor digiti minimi; 12 - m. flexor digiti minimi brevis; 13 - mm. lumbricales; 14 - m. adductor pollicis; 15 - m. flexor pollicis brevis; 16 - m. abductor pollicis brevis; 17 - m. flexor pollicis longus; 18 - m. flexor digitorum profundus; 19 - m. palmaris longus; 20 - m. flexor carpi radialis; 21 - m. brachialis; 22 - m. triceps brachii; 23 - m. deltoideus.
б - задняя поверхность: 1 - m. deltoideus; 2 - m. triceps (caput lat.); 3 - n. radialis; 4 - m. supinator; 5 - m. extensor carpi radialis longus; в - m. extensor carpi radialis brevis; 7 - m. extensor digitorum; 8 - m. extensor digiti minimi; 9 - m. extensor pollicis brevis; 10 - m. extensor pollicis longus; 11 - mm. interossei dorsales; 12 - m. extensor indicis; 13 - m. flexor carpi ulnaris; 14 - m. extensor carpi ulnaris; 15 - n. ulnaris; 16 - m. triceps (caput mediale); 17 - m. triceps (caput longum).


Рис. 5. Двигательные точки мышц туловища и нервов ноги:
а - передняя поверхность: 1 - m. sternocleidomastoideus; 2 - m. omohyoideus; 3 - m. deltoideus; 4 - m. pectoralis major (pars sternocostalis); 5 - m. obliquus abdominis ext.; 6 - n. femoralis; 7 - m. rectus abdominis; 8 - m. pectoralis major (pars clavicularis); 9 - m. trapezius; 10 - точка Эрба (plexus brachialis); 11 - platysma.
б - задняя поверхность: 1 - m. supraspinatus; 2 - m. deltoideus; 3 - m. infraspinatus; 4 - m. rhomboideus major; 5 - m. latissimus dorsi; 6 - m. obliquus abdominis ext.; 7 - m. gluteus minimus; 8 - m. gluteus maximus; 9 - n. ischiadicus; 10 - m. latissimus dorsi; 11 - m. trapezius; 12 - m. rhomboideus minor; 13 - m. trapezius.


Рис. 6. Двигательные точки нервов и мышц ноги:
а - передняя поверхность: 1 - n. femoralis; 2 - m. sartorius; 3 - m. pectineus; 4 - m. adductor longus; 5 - m. adductor magnus; e - m. quadriceps femoris; 7 - m. vastus med.; 8 - m. tibialis ant.: 9 - m. extensor hallucis longus; 10 - mm. interossei dorsales; 11 - m. extensor digitorum brevis; 12 - m. peroneus brevis; 13 - m. extensor digitorum longus; 14 - m. peroneus longus; 15 - m. soleus; 16 - n. peroneus communis; 17 - m. vastus lat.; 18 - m. tensor fasciae latae.
б - задняя поверхность: 1 - m. gluteus min; 2 - m. tensor fasciae latae; 3 - m. biceps femoris (caput longum); 4 - m. biceps femoris (caput breve); 5 - n. tibialis; s - m. gastrocnemius (caput lat.); 7 - m. soleus; 8 - m. peroneus longus; 9 - m. peroneus brevis; 10 - m. flexor hallucis longus; 11 - m. extensor digitorum brevis; 12 - m. abductor digiti minimi; 13 - m. tibialis; 14 - m. flexor digitorum longus; 15 - m. gastrocnemius (caput mediale); 16 - m. semitendinosus; 17 - m. semimembranosus; 18 - n. ischiadicus; 19- m. gluteus maximus.


Рис. 7. «Биактивный» электрод.

Исследовать мимические и жевательные мышцы удобнее в сидячем положении больного. Жевательную и височную мышцы исследуют при слегка приоткрытом рте. Для исследования мышц плечевого пояса больного усаживают с опущенными руками. Для исследования мышц плеча полусогнутую в локтевом суставе руку несколько отводят от туловища (рис. 8). При исследовании мышц верхней половины туловища больной может сидеть или лежать; мышцы же нижней половины туловища, а также нервы и мышцы нижней конечности удобнее исследовать в лежачем положении больного (рис. 9). Для исследования малоберцового нерва больного укладывают на спину, а для исследования большеберцового нерва - на живот.

При односторонних поражениях нервно-мышечного аппарата определяют сначала пороговую величину тока, необходимую для возбуждения соответствующего нерва или мышцы на здоровой стороне, и сопоставляют с пороговой силой на больной стороне. Судить о наличии количественных изменений возбудимости можно лишь в случае выраженной разницы в пороговых значениях на больной и здоровой стороне. При двусторонних поражениях о количественных изменениях можно говорить лишь в случаях, когда либо очень слабые токи вызывают сильные сокращения, либо, наоборот, сильные токи вызывают слабые сокращения.


Рис, 8. Наиболее удобные положения руки (1-2) для исследования электровозбудимости.


Рис. 9. Наиболее удобные положения ноги (1-3) для исследования электровозбудимости.

Количественные изменения возбудимости в виде повышения могут происходить в начальном периоде заболевания периферического двигательного неврона. Обычно же повышение возбудимости наблюдается при тетании. Понижение возбудимости иногда обнаруживается и при отсутствии поражения периферического двигательного неврона, а именно при резко выраженных вторичных мышечных атрофиях. Характерным для поражения центрального двигательного неврона является отсутствие каких-либо качественных изменений возбудимости. Количественные изменения считаются неспецифичными. В ранних стадиях заболевания иногда может обнаруживаться повышение, а в поздних - некоторое понижение возбудимости.

Особого внимания заслуживают изменения возбудимости при миастении и миотонии. При миастении первые импульсы тока вначале вызывают нормальную реакцию, последующие сокращения становятся более слабыми и, наконец, совсем исчезают (миастеническая реакция). После отдыха возбудимость мышц восстанавливается.

Миотоническая реакция заключается в том, что сокращение мышцы, вызванное электрическим раздражением (в особенности тетанизирующим током), держится еще некоторое время после выключения тока (5-20 сек.). Электровозбудимость нервов нормальна. Эта своеобразная реакция наблюдается при болезни.

© 2024 Спорт и жизнь